An Improved “Flies” Method for Stereo Vision: Application to Pedestrian Detection
نویسندگان
چکیده
In the vast research field of intelligent transportation systems, the problem of detection (and recognition) of environment objects, for example pedestrians and vehicles, is indispensable but challenging. The research work presented in this paper is devoted to stereo-vision based method with pedestrian detection as its application (a sub-part of the French national project “LOVe”: Logiciels d’Observation des Vulnerables). With a prospect of benefiting from an innovative method i.e. the genetic evolutionary “flies” method proposed by former researchers on continuous data updating and asynchronous data reading, we have carried on the “flies” method through the task of pedestrian detection affiliated with the “LOVe” project. Compared with former work of the “flies” method, two main contributions have been incorporated into the architecture of the “flies” method: first, an improved fitness function has been proposed instead of the original one; second, a technique coined “concentrating” has been integrated into the evolution procedure. The improved “flies” method is used to offer range information of possible objects in the detection field. The integrate scheme of pedestrian detection is presented as well. Some experimental results are given for validating the performance improvements brought by the improved “flies” method and for validating the pedestrian detection method based on the improved “flies”
منابع مشابه
Fusion of Stereo Vision for Pedestrian Recognition using Convolutional Neural Networks
Pedestrian detection is a highly debated issue in the scientific community due to its outstanding importance for a large number of applications, especially in the fields of automotive safety, robotics and surveillance. In spite of the widely varying methods developed in recent years, pedestrian detection is still an open challenge whose accuracy and robustness has to be improved. Therefore, in ...
متن کاملError Analysis in a Stereo Vision-Based Pedestrian Detection Sensor for Collision Avoidance Applications
This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. ...
متن کاملDisparity Statistics for Pedestrian Detection: Combining Appearance, Motion and Stereo
Pedestrian detection is an important problem in computer vision due to its importance for applications such as visual surveillance, robotics, and automotive safety. This paper pushes the state-of-the-art of pedestrian detection in two ways. First, we propose a simple yet highly effective novel feature based on binocular disparity, outperforming previously proposed stereo features. Second, we sh...
متن کاملMeasurement of Pedestrian Groups Using Subtraction Stereo
In this paper, detection of pedestrian groups and counting of the number of pedestrians in each group using “subtraction stereo” are discussed. Subtraction stereo is a stereo vision method that focuses on the movement of objects to make a stereo camera robust and produces range images for moving regions. Pedestrian groups are detected with a standard labeling, and three dimensional (3D) feature...
متن کاملShape-based Pedestrian Detection∗
This paper presents the method for detecting pedestrian recently implemented on the ARGO vehicle. The perception of the environment is performed through the sole processing of images acquired from a vision system installed on board of the vehicle: the analysis of a monocular image delivers a first coarse detection, while a distance refinement is performed thanks to a stereo vision technique.
متن کامل